

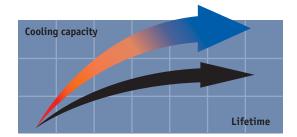
The Professional Choice - in Fluid Management

LDC

With DC motor - optimized for mobile use

The Olaer Group is a global player specialising in innovative, efficient system solutions for temperature optimisation and energy storage. All over the world, our products are working in the most diverse environments and applications, e.g. the aircraft, engineering, steel and mining industries, as well as in sectors such as oil and gas, contracting and transport, farming and forestry, renewable energy, etc.

LDC Air Oil Cooler


For mobile use - maximum cooling capacity 30 kW

The LDC air oil cooler with 12 or 24 V DC motor is optimized for use in the mobile industry. Together with a wide range of accessories, the LDC cooler is suitable for installation in most applications and environments. The maximum cooling capacity is 30 kW at ETD 40 $^{\circ}$ C. Choosing the right cooler requires precise sizing. The most reliable way to size is with the aid of Oiltech's calculation program. This program, together with precise evaluations from our experienced, skilled engineers, gives you the opportunity for more cooling per \in invested.

Overheating - an expensive problem

An under-sized cooling capacity produces a temperature balance that is too high. The consequences are poor lubricating properties, internal leakage, a higher risk of cavitation, damaged components, etc. Overheating leads to a significant drop in cost-efficiency and environmental consideration.

Temperature optimisation - a basic prerequisite for costefficient operation

Temperature balance in a hydraulic system occurs when the cooler can cool down the energy input that the system does not consume - the system's lost energy (Ploss = Pcool = Pin - Pused).

Temperature optimisation means that temperature balance occurs at the system's ideal working temperature – the temperature at which the oil's viscosity and the air content comply with recommended values. The correct working temperature produces a number of economic and environmental benefits:

- The hydraulic system's useful life is extended.
- The oil's useful life is extended.
- The hydraulic system's availability increases more operating time and fewer shutdowns.
- Service and repair costs are reduced.
- High efficiency level maintained in continuous operation – the system's efficiency falls if the temperature exceeds the ideal working temperature.

Clever design

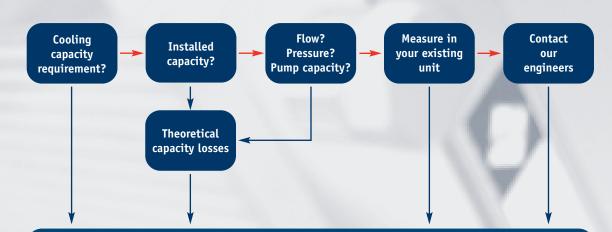
and the right choice of materials and components produce a long useful life, high availability and low service and maintenance costs.

Cooler matrix

with low pressure drop and high cooling capacity.

Easy to maintain

and easy to retrofit in many applications.



Smart DC Drive

Smart DC Drive for soft start of fan, as well as lower power consumption and sound level by means of temperaturecontrolled speed regulation. Smart DC Drive also eliminates voltage peaks, thus contributing towards a longer useful life for the fan motor.

3

Calculate the cooling capacity requirement

Choose the right kind of cooler

Enter your values...

Better energy consumption means not only less environmental impact, but also reduces operating costs, i.e. more cooling per € invested.

More cooling per €

with precise calculations and our engineers' support

Optimal sizing produces efficient cooling. Correct sizing requires knowledge and experience. Oiltech's calculation program, combined with our engineers' support, gives you access to this very knowledge and experience. The result is more cooling per \in invested.

The user-friendly calculation program can be downloaded from Oiltech's website – www.oiltech.se.

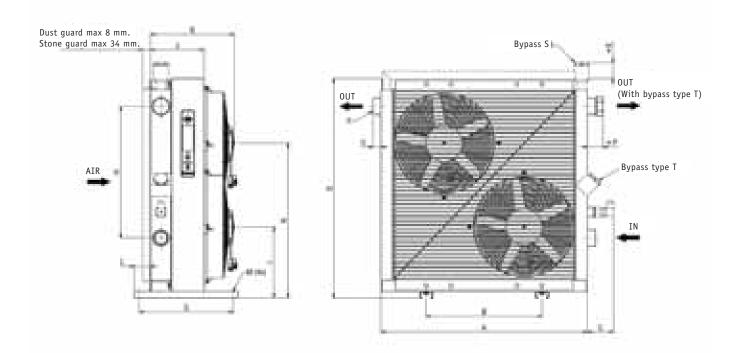
Valuable system review into the bargain

A more wide-ranging review of the hydraulic system is often a natural element of cooling calculations. Other potential system improvements can then be discussed – e.g. filtering, offline or online cooling, etc. Contact us for further guidance and information.

Oiltech's quality and performance guarantee insurance for your operations and systems

Oiltech's

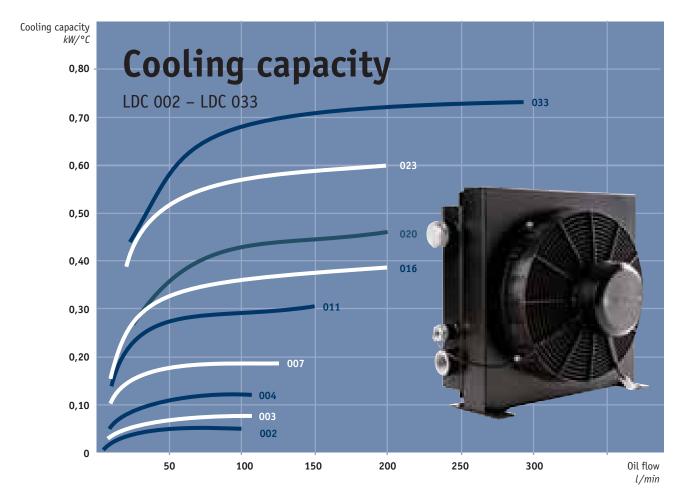
blue bool

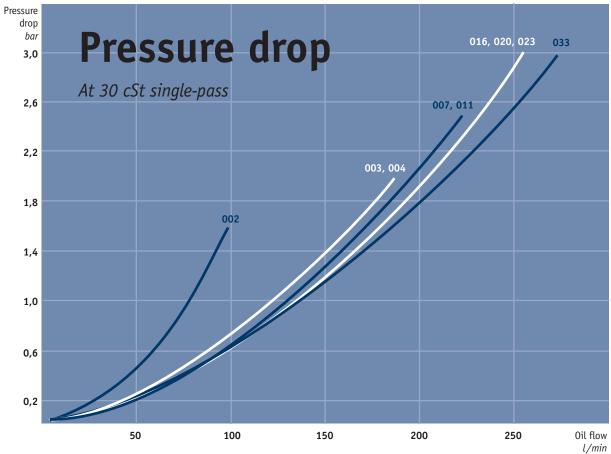

A constant striving towards more cost-efficient and environmentlyfriendly hydraulic systems requires continuous development. Areas where we are continuously seeking to improve performance include cooling capacity, noise level, pressure drop and fatigue.

Meticulous quality and performance tests are conducted in Oiltech's laboratory. All tests and measurements take place in accordance with standardised methods - cooling capacity in accordance with EN1048, noise level ISO 3743, pressure drop EN 1048 and fatigue ISO 10771-1.

Air Oil Cooler

Calculation


For more information about our standardised tests, ask for "Oiltech's blue book – a manual for more reliable cooler purchasing".



The cooling capacity curves are based on the inlet oil temperature and the ambient air temperature. An oil temperature of 60°C and an air temperature of 20 °C produce a temperature difference of 40 °C. Multiply by kW/°C for total cooling capacity.

ТҮРЕ	A	В	C	D	E	F	G	H	Ι	J	К	L	MØ	N	0	D	Weight	Acoustic pressure)LpA dB(A) 1m*
LDC 002	184	74	72	189	94	G1½	187	72	100	107	157	36	9	-	11	25	4	66
LDC 003	244	134	82	227	71	G1	146	90	118	102	147	26	9x14	-	23	35	5	68
LDC 004	267	134	82	253	72	G1	146	90	131	107	152	26	9x14	-	23	35	б	68
LDC 007	330	203	82	338	59	G1	267	160	173	105	170	57	9	-	23	44	9	71
LDC 011	400	360	82	396	65	G1	101	230	200	125	218	-	9x29	-	23	44	12	74
LDC 016	464	416	82	466	63	G1	101	300	235	125	128	-	9x29	-	23	44	15	74
LDC 020	510	470	82	510	61	G1	101	280	257	125	211	-	9x29	-	23	44	18	77
LDC 023	615	356	46	635	26	G1	290	305	200	125	218	50	13	455	-	8	25	77
LDC 033	635	356	82	678	59	G1¼	290	406	220	165	258	50	13	478	25	49	30	77
* = Noise level	tolerance	± 3 dB(A	4)															

6

Key for LDC air oil coolers

All positions must be filled in when ordering.

EXAMPLE:

LDC - 016 - A - S - 00 - S20 - S - 0 1 2 3 4 5 6 7 8

- AIR OIL COOLER 1. WITH DC MOTOR = LDC
- **COOLER SIZE** 2. 002, 003, 004, 007, 011, 016, 020, 023, 033
- 3. MOTOR VOLTAGE 12 V = A 24 V = B

ACCESSORIES FOR DC MOTOR 4.

No motor accessories	= 0
Smart DC Drive, incl. temperature indicator 50°C	= S
Relay box	= C

5. THERMO CONTACT

No thermo contact	= 00
40 °C.	= 40
50 °C.	= 50
60 °C.	= 60
70 °C.	= 70
80 °C.	= 80
90 °C.	= 90

COOLER MATRIX 6.

Standard	= 000
Two-pass	= T00
Built-in, pressure-controlled bypass, single-pass	
2 bar	= S20
5 bar	= S50
8 bar	= S80
Built-in, pressure-controlled bypass, two-pass*	
2 bar	= T20
5 bar	= T50
8 bar	= T80
Built-in temperature and pressure-controlled bypass, single-p	ass
50 °C, 2.2 bar	= S25
60 °C, 2.2 bar	= S26
70 °C, 2.2 bar	= S27
90 °C, 2.2 bar	= S29
Built-in temperature and pressure-controlled bypass, two-pass	s*
50 °C, 2.2 bar	= T25
60 °C, 2.2 bar	= T26
70 °C, 2.2 bar	= T27
90 °C, 2.2 bar	= T29
* not for LDC 002 - LDC 004	

MATRIX GUARD 7.

No guard	= 0
Stone guard	= S
Dust guard	= D
Dust and stone guard	= P

STANDARD/SPECIAL 8.

Standard	= 0
Special	= Z

Technical specification

FLUID COMBINATIONS

Mineral oil	HL/HLP in accordance with DIN 51524
Oil/water emulsion	HFA, HFB in accordance with CETOP RP 77H
Water glycol	HFC in accordance with CETOP RP 77H
Phosphate ester	HFD-R in accordance with CETOP RP 77H

MATERIAL

Cooler matrix	Aluminum
Fan blades/guard	Glass fibre reinforced polypropylene
Fan housing	Steel
Other parts	Steel
Surface treatment	Electrostatically powder-coated

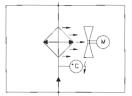
COOLER MATRIX

Maximum static working pressure	21 bar
Dynamic working pressure	14 bar*
Heat transfer tolerance	±6 %
Maximum oil inlet temperature	120 °C
* Tested in accordance with ISO/DIS 10771-1	

ELECTRIC MOTOR

LDC	002	003	004	007-020	023-033
Speed (rpm)	3 700	3 670	3 350	3 060	3 060
Protection std.	IP 68	IP 68	IP 68	IP 68	IP 68
Insulation class	Н	Н	Н	Н	Н
Ambient temp.		-3	- 3°0	+80°C	
Power consump. (A) 12V	6.5	8	8	20	2x10*
(A) 24 V	3.5	4	4	10	2x10*

* = LDC 023 and LDC 033 have two motors Use a relay if the current load is superior to: 8 A at 12 V and 6 A at 24 V


COOLING CAPACITY CURVES

The cooling capacity curves in this technical data sheet are based on tests in accordance with EN 1048 and have been made using oil type ISO VG 46 at 60°C.

CONTACT US FOR ADVICE ON

- Oil temperatures > 120°C
- Oil viscosity > 100 cSt
- Aggressive environments
- Ambient air rich in particles
- High-altitude locations

CONNECTION CHART

Connection chart for LDC air oil cooler.

With our specialist expertise, industry knowledge and advanced technology, we can offer a range of different solutions for coolers and accessories to meet your requirements.

Take the next step

- choose the right accessories

Supplementing a hydraulic system with a cooler, cooler accessories and an accumulator gives you increased availability and a longer useful life, as well as lower service and repair costs. All applications and operating environments are unique. A well-planned choice of the following accessories can thus further improve your hydraulic system. Please contact us for quidance and information.

Pressure-controlled bypass valve Integrated

Guides the oil past the cooler matrix if the pressure drop is too high. Reduces the risk of the cooler bursting, e.g. in connection with cold starts and temporary peaks in pressure or flow. Available for single-pass or two-pass matrix design.

Smart DC Drive speed regulation

For cost-efficient operation and better environmental consideration through speedregulated fan control – the higher the temperature, the higher the fan speed.

Temperature-controlled bypass valve *Integrated*

Same function as the pressure-controlled bypass valve, but with a temperaturecontrolled opening pressure – the hotter the oil, the higher the opening pressure. Available for single-pass or two-pass matrix design.

Stone guard/Dust guard Protects components and systems from tough conditions.

Thermo contact

Transmitter with fixed temperature indication. For temperature warnings, and for more cost-efficient operation and better environmental consideration through the automatic switching on and off of the fan motor.

Temperature-controlled 3-way valve External

Same function as the temperature-controlled bypass valve, but positioned externally. Note: must be ordered separately.

Professional competence as well as advanced technology and extensive knowledge from the industry, allow us to provide many cooler combinations, which meet your unique needs.

Combinations

providing optimal solutions

A close collaboration between our application engineers, designers and you as customer during the whole project will result in a high-quality product. The final product will be a tailor-made cooler, which always meet your unique needs.

Extensive choices

Long-term experience from the mobile field has provided us with a unique ability to deliver the ideal combination cooler solution. Depending on the conditions, the cooler fan can be operated by the diesel engine on the machine or by a hydraulic motor or a DC motor. We can also supply many different cooler combination options. A frequent combination is the "side-by-side"-cooler, where the coolers are placed side-by-side, no matter the media, such as a water cooler, an oil cooler and an intercooler. Another solution is the "sandwich"-cooler, where the coolers are placed in front of each other. The solution could also be a combination of these two. No matter which combination will be used, the pressure drop and the heat dissipation across the matrix will always be optimal.

The Olaer Group develops, manufactures and markets products and systems in six business areas.

Global perspective

and local entrepreneurial flair

The Olaer Group is a global player specialising in innovative, efficient system solutions for temperature optimisation and energy storage.

The Group develops, manufactures and markets products and systems for a number of different sectors, e.g. the aircraft, engineering, steel and mining industries, as well as for sectors such as oil and gas, contracting and transport, farming and forestry, renewable energy, etc. All over the world, our products operate in the most

diverse environments and applications. One constantly repeated demand in the market is for optimal energy storage and temperature optimisation.

We work at a local level with the whole world as our workplace - local entrepreneurial flair and a global perspective go hand in hand.

Our local presence, long experience and a wealth of knowledge combined with our cutting-edge expertise to give you the best possible conditions for making a professional choice.

Olaer Group Network

THE OLAER GROUP: AUSTRALIA Olaer FCH. Tel: +61 2 9981 6888. AUSTRIA Olaer Austria GmbH . Tel: +43 7229 80306. BELGIUM S.A. Olaer Benelux, Tel: +32 2 466 15 15. CZECH REPUBLIC Olaer CZ s.r.o. Tel: +42 5 47125 601-8. DENMARK Oiltech DK. Tel: +45 86 69 20 38. FINLAND Oiltech Hydraulics OY. Tel: +358 9 413 755 00. FRANCE Olaer Industries S.A. Tel: +33 1 41 19 17 00. GERMANY Olaer Industries GmbH. Tel: +49 6842 9204-0. HOLLAND Olaer Nederland B.V. Tel: +31 76 5412453. INDIA FCH India. Tel: +91 802 6533587. ITALY Olaer Italiana S.p.A. Tel: +39 011 991 85 11. KOREA Hyundai Olaer Hydraulic Co. Tel: +82 31 499 0897. NORWAY Oiltech AS. Tel: +47 64 91 11 80. POLAND Oiltech Polska. Tel: +48 22 6738162. SOUTH AFRICA FCH c/o Rolton Products CC. Tel: +27 11 474 3095. SPAIN Olaer-Oiltech Iberica SAU. Tel: +34 933 368 900. SWEDEN Oiltech AB. Tel: +46 8 636 07 00. SWITZERLAND Olaer (Schweiz) AG. Tel: +41 26 492 70 00. UK FCH Ltd. Tel: +44 1244 535515. USA Oil Air Hydraulics Inc. Tel: +1 713 937 89 00.

www.oiltech.se